Transportation Infrastructure & Economic Development

A Report to the North Dakota Legislative Council by the Upper Great Plains Transportation Institute North Dakota State University

General Objectives

- Determine how improvements to the state's transportation infrastructure might enhance the business climate of North Dakota and the state's competitive position in economic development, "with a focus on the potential to expand the sale of goods to markets outside the state by strengthening the state's transportation infrastructure"
- 2. Provide recommendations on "how to enhance the state's transportation infrastructure"
- 3. Identify "proposed legislative changes necessary to implement any recommended changes"

Specific Topics

- Raising highway load limits
 - □Spring limits
- Rail service
 - Decline in service
 - Potential incentives to expand service
- Air service specially-situated airports
- Recommended infrastructure enhancements
- Economic development benefits

Highway Analysis Process

Load Limit Analysis Process

HERS-ST: Background

- Enhanced version of national HERS model used by USDOT
 - □ Info. submitted to Congress in C&P report
 - Investment required to maintain or improve the highway system
 - □Benefits of investments (B/C ratios)
 - □ Highway system performance measures
- HERS-ST & HERS use same analytical engine
- Both use the HPMS sample

What Benefits Are Considered?

	User Benefit	Agency Cost	Exter- naltiy
Benefits			
Vehicle Operating Cost Savings	X		
Safety Cost Savings	X		
Travel Time Cost Savings	X		
Benefits to New Travelers	X		
Highway Maintenance Cost Savings		X	
Residual Value of Investment		X	
Emissions Reductions			X
Costs			
Initial Improvement Cost		X	

Benefit-Cost Logic

Base Case (No improvement)

- □ Conditions deteriorate → user and maintenance costs increase
- □ Terminal condition is reached (e.g., PSR of $1.0 \rightarrow$ conversion from paved to unpaved road)
- Improvement Case
- Benefits = difference
- Induced demand affects benefits over time
 - Baseline traffic growth (Future AADT / AADT) adjusted for generalized price of travel

HERS-ST Results

Forecasted Improvements to Highway Pavements in North Dakota: 2005-2024						
Cost of Lane-MilesCost of ImprovementsBenefit CostImprovement TypeImproved(\$000)Ratio						
Reconstruction due to Pavement Condition	44	36,342	3.50			
Major Widening with Avg. Cost Lanes	76	58,597	7.78			
Resurfacing with Minor Widening	-	780	-			
Resurfacing with Shoulder Imps.	1,491	368,652	1.78			
Resurfacing and Realignment	14,626	2,676,805	5.20			
All	16,263	3,145,014	4.89			

HERS-ST Results

Forecasts of Highway User Costs in North Dakota (\$/1,000 vehicle-miles) from 2004 to 2024				
Highway User Costs	2004	2024		
Travel Time Costs	\$342.85	\$340.43		
Vehicle Operating Costs:				
4-Tire Vehicles	\$250.90	\$241.54		
Trucks	\$828.43	\$820.12		
All Vehicles	\$353.79	\$345.77		
Crash Costs	\$111.91	\$110.21		
Total User Costs \$809.49 \$797.63				

- Three Scenarios were estimated:
- 75% of baseline funding
- 50% of baseline funding
- 25% of baseline funding

Changes in Lane-Miles Improved, Improvement Costs, and Routine Maintenance Costs as a Result of Hypothetical Budget Constraints				
Funding Level (Percent of Baseline)	Lane Miles Improved: 2005-2024	Capital Improvement Cost (Million \$): 2005-2024	Maint. Cost (Million \$): 2005-2024	
100%	16,263	\$3,145.01	\$ 166.39	
75%	12,658	\$2,358.76	\$ 180.29	
50%	8,469	\$1,468.33	\$ 200.73	
25%	4,309	\$786.25	\$ 228.69	

Table 5. Changes in Highway System Performance as a Result of Hypothetical Budget Constraints				
	Predicted Values for 2024			
Funding Level (Percent of Baseline)	VMT (billions)	Avg. Travel Speed (mph)	Average IRI (in/mi)	
100%	6.80	67.4	108	
75%	6.73	66.1	122	
50%	6.57	62.8	146	
25%	6.35	56.9	184	

Table 6. Changes in Highway User Costs as a Result o	f
Hypothetical Budget Constraints	

	Projected User Costs per 1,000 Vehicle-Miles in 2024		
Funding Level (Percent of Baseline)	Travel Time	Vehicle Operating	
100%	\$340	\$346	
75%	\$348	\$350	
50%	\$369	\$354	
25%	\$404	\$358	

REMI Analysis Process

15

HERS-ST Output to REMI

User Costs Operating Costs □ Safety Costs Emissions Costs Agency Expenditures Construction/Maintenance Costs Funding Mechanism Effective Distance Commuting Cost Transportation Cost Accessibility Cost

Dual-Regional Price and Wage Linkages

Baseline Forecast

Change in 2024 North Dakota Employment and Gross Regional Product Estimates Under Different Highway Funding Scenarios				
Percent of Baseline Funding				
	75% 50% 25%			
Total Employment (Thousand)	-7.20	-23.96	-66.37	
Labor Force (Thousand)	-6.28	-24.84	-56.26	
GRP (2004 Billion \$)	-0.41	-1.35	-3.91	

Percentage Changes From 2024 Baseline Forecast
Under Different Highway Funding Scenarios

	Percent of Baseline Funding		
	75%	50%	25%
Total Employment	-1.45%	-4.82%	-13.35%
Labor Force	-1.67%	-6.60%	-14.95%
GRP	-1.41%	-4.65%	-13.41%

Percentage Change in Imports and Exports Under Different Highway Funding Scenarios					
75% 50% 25%					
Imports from Rest of Nation	-1.25%	-4.04%	-11.33%		
Exports to Rest of Nation	-1.90%	-5.52%	-19.33%		
Relative Cost of Production	0.53%	2.29%	5.87%		
Relative Delivered Price	0.21%	0.88%	2.36%		

Spring Load Restrictions

Spring Load Restrictions on State Highways in North Dakota					
Class	Single Axle	Tandem Axle	3 Axles	Gross Vehicle Weight	
Legal Weights	20,000 lb	34,000 lb	48,000 lb	105,500 lb	
8-ton	16,000 lb	32,000 lb	42,000 lb	105,500 lb	
7-ton	14,000 lb	28,000 lb	36,000 lb	105,500 lb	
6-ton	12,000 lb	24,000 lb	30,000 lb	80,000 lb	
5-ton	10,000 lb	20,000 lb	30,000 lb	80,000 lb	

Improvement Costs

Costs to Eliminate Some or All Spring Load Restrictions on State Highways									
	The Costs to Raise All State Highway Segments to:								
HPCS	Legal Weight	Legal Weight 8-Ton 7-To							
Interregional	\$23,000,000								
State Corridor	\$27,100,000								
District Corridor	\$122,000,000	\$62,575,000	\$6,600,000						
District Collector	\$120,000,000	\$78,725,000	\$32,625,000						
Total	\$292,100,000	\$141,300,000	\$39,225,000						

Impacts of Spring Limits on Grain Shipments

Percent of Crops Marketed by Month												
Crop	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wheat	11	9	9	5	3	3	9	14	11	7	8	11
Barley	8	8	9	4	2	11	5	18	11	8	7	9
Oats	13	3	10	15	3	4	6	11	10	8	7	10
Corn	15	11	9	7	5	6	6	6	2	9	13	11
Sunflowers	10	8	11	5	2	4	5	2	3	29	11	10
Beans	10	9	9	7	6	4	6	3	17	13	4	12
Soybeans	15	6	3	2	1	1	2	1	6	40	14	9
North Dakota Agricultural Statistics 2005. North Dakota Agricultural Statistics Service, ND- NASS, Fargo, N.D., 2005.												

Agricultural Impacts

Annual Impacts of Seasonal Highway Load Limits on Grain Transportation Cost

Impact Factor	Annual Value
Incremental Vehicle-Miles of	
Travel	570,734
Incremental Vehicle-Hours	8,786
Incremental Cost	\$1,227,599

Manufacturing Impacts

Annual Impacts of Seasonal Highway Load Limits on the Transportation Cost of Manufactured and Processed Goods

Impact Factor	Annual Value
Incremental Vehicle-Miles of Travel	1,733,224
Incremental Vehicle-Hours	29,242
Incremental Cost	\$1,288,634

Load Limit Analysis

- Partial analysis-excludes oil, beets, potatoes, and other crops
- It is not cost effective to remove spring load limits from all state highways.
- Removing limits on key highways may be cost effective.
- UGPTI should work with NDDOT to conduct individual analyses of key highways and determine if these highways should be improved to eliminate spring load restrictions.

- The NDDOT is focused on a preservation program that keeps pavements in good condition.
- These programs generate substantial economic benefits and should be continued.

Access to key industrial and agricultural facilities should be analyzed on a case-bycase basis.

These facilities include shuttle-train elevators, processing plants, current and future ethanol plants and other key industrial facilities.

- The benefits and costs of eliminating or mitigating spring load limits on key highway segments should be analyzed on a case-by-case basis.
- Load limit elimination on highway segments serving key agricultural and manufacturing locations may be cost effective.

Load Limited Segments and Shuttle Elevators

- New mechanistic pavement analysis techniques offer potential for improved forecasting of pavement lives
 - May make it possible to shorten the durations of spring load restrictions in some cases, and identify more cost-effective designs.
 - Thus, it is important to develop data and inputs to fully utilize these advanced procedures.

- Selective case studies should be undertaken of highway load limits in counties.
- A great deal of information must be developed in order to assess the benefits and costs of uniform county load limits.
- A cost-effective analysis plan must be developed that includes representative counties throughout the state.

Branch Line Analysis

- Scenario 1: All branch lines and regional railroads are abandoned, grain at branch line elevators is trucked to the nearest mainline elevator.
- Scenario 2. All branch lines and regional railroads are abandoned, grain travels directly from field to the nearest mainline elevator.

Branch Line Analysis

Direct and Secondary Costs Associated with Transshipment
Scenario in 2024 (Stated in 2004 Dollars)

Variable Trucking Cost	\$7,082,039
Handling Cost	\$10,838,432
Highway Improvement Costs	\$8,883,165
Secondary Impact of Production Cost Increase	\$4,526,587
Total Cost	\$31,330,224
Special Fuel Tax Receipts	\$332,286
Net Impact	\$30,997,938

Branch Line Analysis

Direct and Secondary Costs Associated with Farm to Mainline Scenario in 2024: (Stated in 2004 Dollars)					
Variable Trucking Cost	\$7,535,229				
Handling Cost	\$0				
Highway Improvement Costs	\$10,034,828				
Secondary Impact of Production Cost Increase	\$3,087,124				
Total Cost	\$20,657,181				
Special Fuel Tax Receipts	\$375,366				
Net Impact	\$20,281,815				

ND Rail Investment Programs

- Local Freight Rail Assistance
- Reduced Interest Loans
- Freight Rail Improvement Program

Rail Recommendations

- NDDOT should continue its rail assistance programs.
- Focus on increasing axle loads, travel speed, and efficiency make the state more attractive to businesses.
- Additional funds are needed for rail assistance programs.

Air Services Analysis

Aviation-Related Expenditures and Employment in North Dakota: 2004								
	2004 Exp	penditures (Th	2004 Employment					
	Direct	Direct Induced Total Direct Indu				Total		
Commercial Tenants								
Commercial Tenants	\$106,092	\$159,138	\$265,230	2,622	2,622	5,244		
GA Tenants	\$66,910	\$100,365	\$167,275	1,859	1,859	3,718		
Services	\$216,778	\$325,168	\$541,942	1,145	1,145	2,290		
Visitor Expenditures	\$193,430	\$290,145	\$438,575					
Total Impacts	\$403,209	\$604,813	\$1,008,023	5,626	5,626	11,252		

Air Service Trends

- Growth of Air Cargo
- Growth of Commercial Carriers and Regional Jets
- Growth in Use of General Aviation Airports

Current and Future Airport Needs

- Large commercial airports are situated to participate in growth of air cargo and regional jet services
- Local airports near energy and processing facilities are situated to provide business accessibility. (Hazen, Washburn, potential ethanol sites)
- Physical constraints hinder airport expansion. (Bowman)
- Many small airports would like automated weather services, but do not meet minimum criteria.
- Improvements to GA terminals are needed to enhance business access.

Air Service Recommendations

- Infrastructure and capacity constraints that limit growth and expansion to accommodate increased demand.
- Encroachment of incompatible land development with concerns over aircraft noise and safety.
- Funding will be a greater problem in the future as limited local, state and federal dollars are dedicated to other priorities.