

HYDRAULIC STUDY
For
Culvert Recommendation
Montpelier Township
In NE 1/4 of NW 1/4 of Section 29, T 137 N, R 63 W.
Stutsman County, ND
July, 2019

7/18/19

Date

Benjamin B. Aaseth License No. 10085

Interstate Engineering, Inc. Jamestown, North Dakota J19-04-090

I. GENERAL

This hydraulic study has been prepared to investigate the size of structure that would be required to convey the water at a crossing located in the NE 1/4 of NW 1/4 of Section 29, T 137 N, R 63 W, Montpelier Township in Stutsman County, North Dakota. There are no upstream structures that impact this site at the analyzed event year. This site will be designed for a 10-year event, based upon North Dakota Administrative Code 89 for township roads.

The existing pipe onsite has damaged end sections. The upstream end section has a damaged top as well as some rust. The downstream end section is split at the seams.

The existing site has the following characteristics:

- Top of Road = 1489'
- o Existing Road Width = 22'
- o Tailwater = 10 foot bottom with 10:1 side slopes
- Invert North end = 1484.19'
- Channel elevation near north end = 1484.07'
- Invert South end = 1484.13'
- Channel elevation near south end = 1484.13'
- o Lat: 46° 39' 35.23" N Long: 98° 39' 42.12" W

II. <u>HYDROLOGY</u>

Originally when the quad maps were developed it appeared that this culvert drained a much larger area, since that time there has been some change in flow patterns. The water approximately one-mile south of the culvert located just south of the Section Line, flows primarily easterly thru an existing drainage channel. Originally it appeared that this water flowed north to the culvert in quad maps originally developed. Considering that this crossing is only to be sized for a 10-year event only 5% of the larger drainage flows were considered to flow north based upon aerial drone video and photo graphs that were taken in the spring of 2019. See Appendix B. If all of the area to the south would be considered when sizing the culvert, the size would need to be significantly larger. See sheet 3 for the original drainage area identified with the original quad maps, compared to the drainage used for sizing the culvert on Sheets 1 & 2.

The drainage area for this site was determined, using the USGS Quad Maps, to be approximately 0.95 square miles (approximately 608 acres). This area is shown on Sheets 1 & 2. The drainage basin flows through mainly farmland and wetland areas. The main use of the drainage area is agriculture land.

The discharges at the site were determined utilizing the USGS "Techniques for Estimating Peak-Flow Frequency Relations for North Dakota Streams 1992", which takes into consideration different soil types, vegetation, storage,

slope of the basin, and terrain. The area being studied is in Region C, with slopes of approximately 4 feet per mile.

III. <u>HYDRAULIC ANALYSIS</u>

The FHWA HY-8 program was used in the analysis. The following data has been compiled and utilized to determine a sufficient and appropriate structure at this location.

Channel:

Area identified on quad maps

Total Drainage Area:

0.95 square miles

Existing Structure at Site:

18" Corrugated Steel Pipe

Existing Upstream Structure:

None or Unknown

Existing downstream Structure:

24" Corrugated Steel Pipe

Site Characteristics: (Small Drainage + 5% of the larger drainage)

Design (2):	9 cfs
Design (10):	43 cfs
Design (15):	56 cfs
Design (25):	74 cfs
Design (50):	103 cfs
Design (100):	136 cfs
Greatest Flood (500 year):	225 cfs

The structure was sized for 10-year event, restricting the headwater to be the pipe diameter + 2 feet which is based on the North Dakota Stream and Crossing Standards.

IV. <u>STRUCTURE COMPARISON</u>

The following chart analyzes the proposed structure for the crossing of the roadway:

Numbe	Type	Total Waterway	Allowable
of Lines		Opening (sq. ft.)	<u>Headwater</u>
<u> </u>	* 30" CSP	4.90	Dia. + 2 feet

^{*24&}quot; CSP should be installed at this time due to downstream culvert sizes.

Headwater Comparison

	T	
Flow	Headwater Existing (ft)	Headwater Proposed (ft)
(cfs)		30" CSP
7		
		1485.76
	1489.05	1488.50
55	1489.10	1489.08
		1409.00
	15.01	46.79
	Flow (cfs) 7 32 55	(cfs) 18" CSP 7 1486.06 32 1489.05 55 1489.10

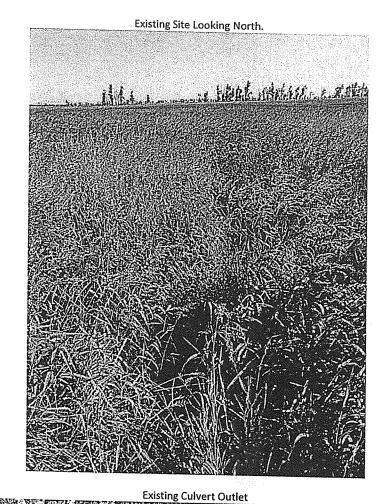
V. <u>CONCLUSION & RECOMMENDATION</u>

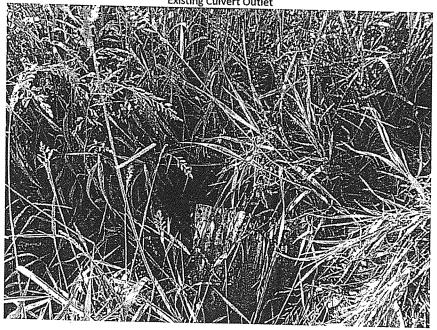
The recommendation pipe is a 30" Corrugated Steel Pipe, but considering that the downstream culvert is only 24", this culvert should be installed at only a 24" at this time. This pipe should be installed at the existing inverts. The pipe should be installed with end sections as there is evidence that the existing pipe has been damaged from machinery likely mowing the ditches. If further reports are done with a larger study, all the pipes on this drainage should be analyzed to the James River to create a system that would meet state laws.


As per the North Dakota permit from the USACE, counter sinking is only required when there is a stable stream bed. This stream bed is not stable and therefor no need for counter sinking.

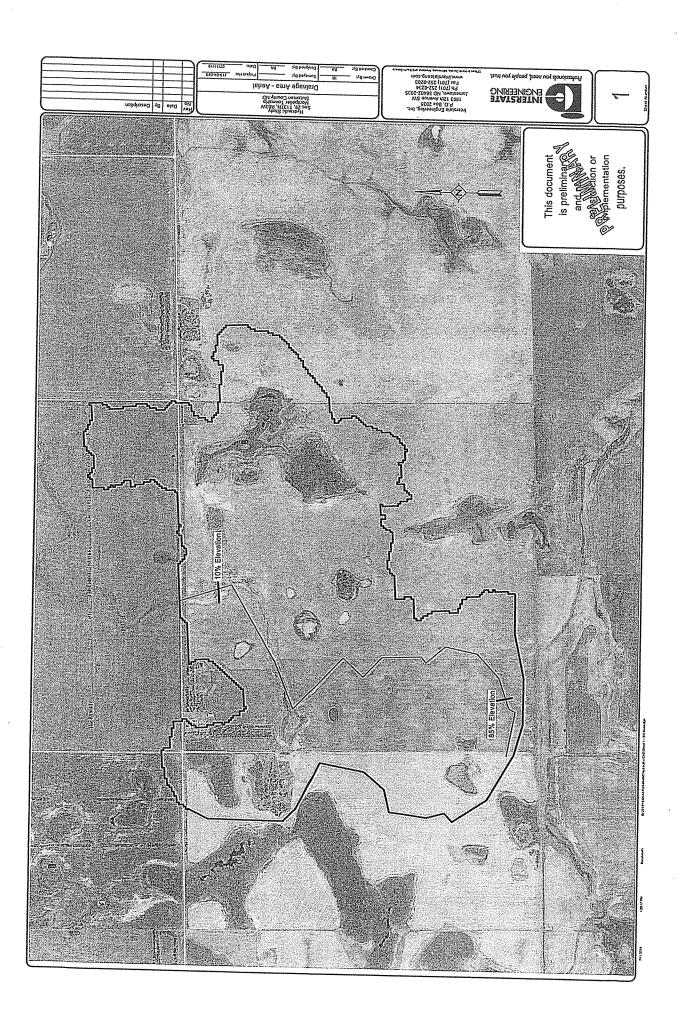
Please call at any time if you have any questions or need any further information.

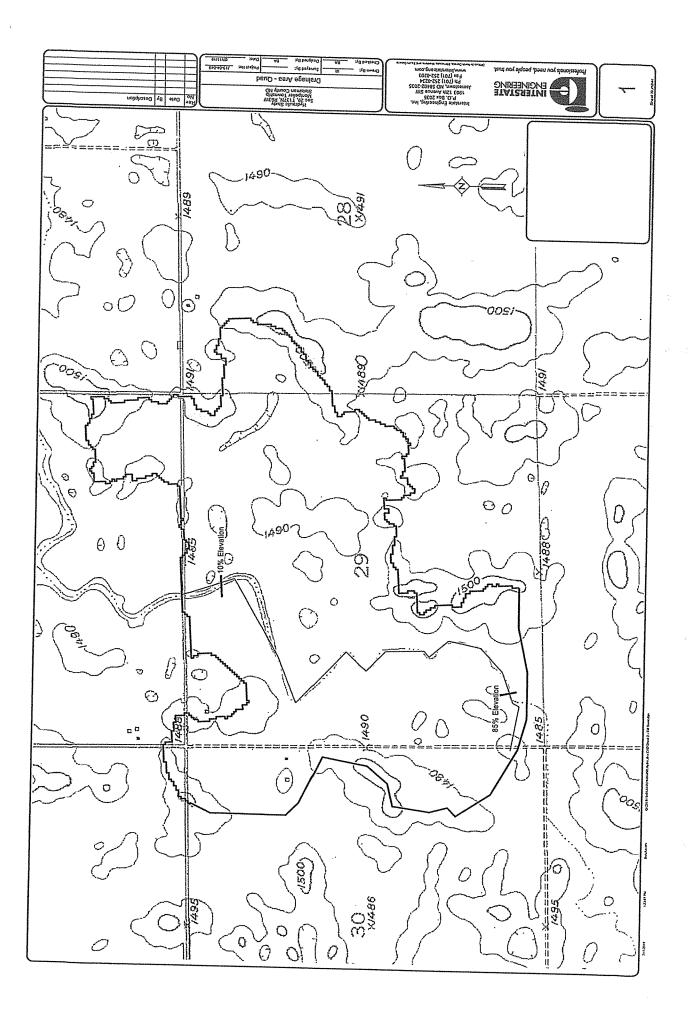
Ben Aaseth

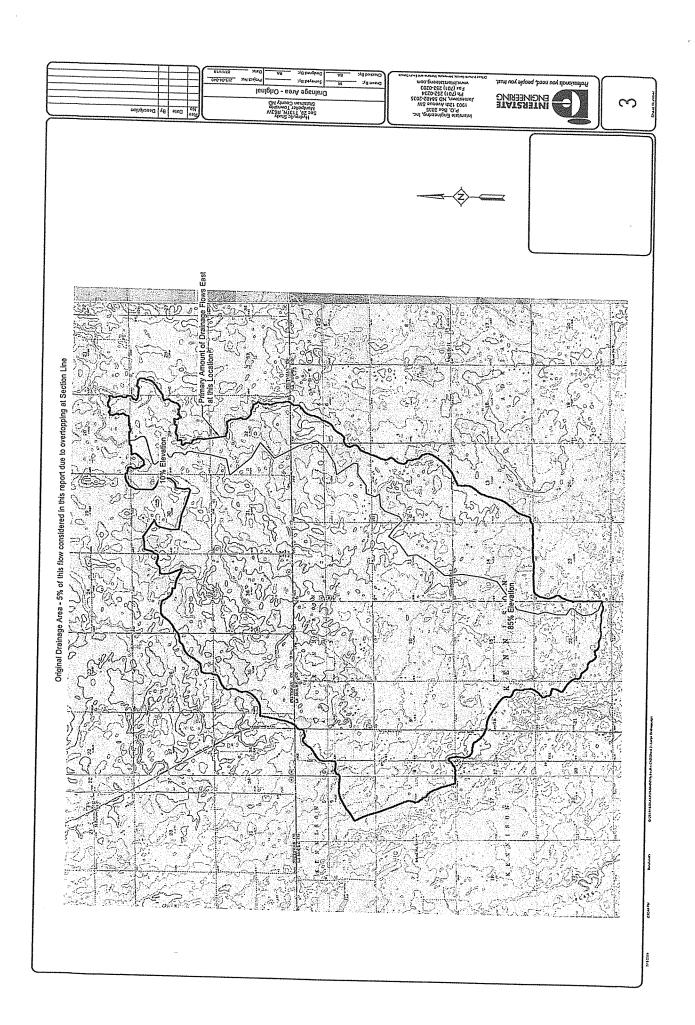

Existing Site Photos


Existing site looking south.

Existing Culvert Invert.

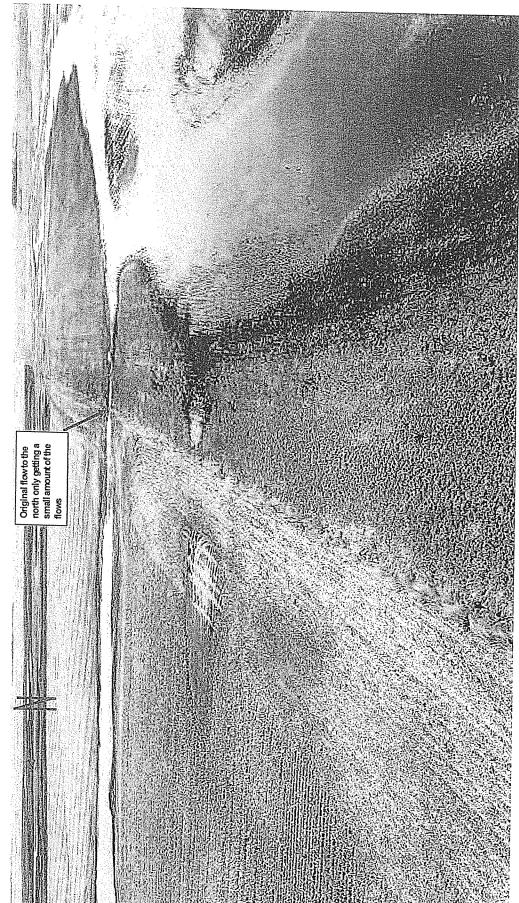


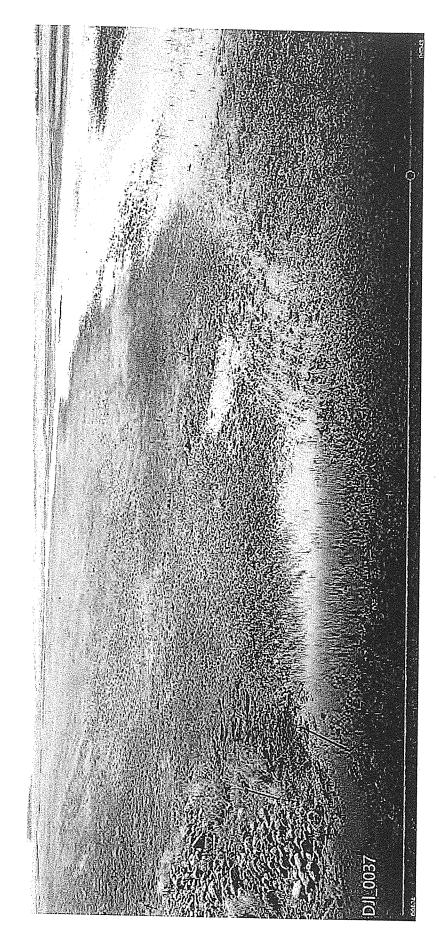


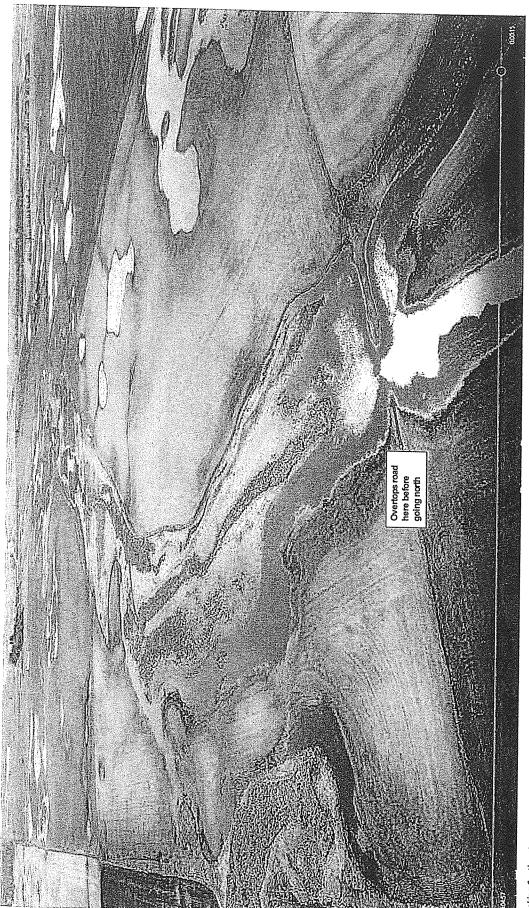


APPENDIX A

PROJECT MAPS







APPENDIX B

DRONE PHOTOS

Looking Southeast

APPENDIX C

CALCULATIONS

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 9 cfs Design Flow: 43 cfs Maximum Flow: 74 cfs

Table 1 - Summary of Culvert Flows at Crossing: Small Area - Existing

				9
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
1486.46	9.00	9.00	0.00	
1488.94	15.50	14.90	0.00	1
1489.03	22.00	15.06		100
1489.05	28.50		6.79	10
1489.06		15.09	13.16	4
	35.00	15.12	19.77	4
1489.08	41.50	15.14	26.09	3
1489.08	43.00	15.15	27.76	3
1489.10	54.50	15,18	39.14	
1489.11	61.00	15.20		3
1489.12	67.50		45.73	3
1489.13		15.22	51.81	2
	74.00	15.24	58.14	2
1489.00	15.01	15.01	0.00	Overtopping

Rating Curve Plot for Crossing: Small Area - Existing

Table 2 - Culvert Summary Table: Culvert 1

	7			····							
Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwate Velocity (fl/s)
9.00	9.00	1486.46	2.357	2.266	7-JH2c	-1.000	1.156	1.156	0,360	F 004	
15,50	14.90	1488.94	4.837	3,598	7-JH2c	-1.000				5.994	1,836
22.00	15.06	1489.03	4.931				1.405	1.405	0.483	8.527	2.163
28.50				3.646	7-JH2c	-1.000	1.409	1.409	0.581	8,608	2.395
	15,09	1489.05	4.947	3.654	7-JH2c	-1.000	1,410	1,410	0.664		
35.00	15,12	1489.06	4.962	3,662	7-JH2c	-1.000	1.410			8,622	2.579
41.50	15.14	1489.08	4.974	3,668				1.410	0.737	8,634	2.732
43.00	15.15				7-H2c	-1.000	1.411	1.411	0.803	8.645	2.864
		1489.08	4.978	3.670	7-H2c	~1.000	1.411	1.411	0.818	8,648	
54.50	15.18	1489.10	4.998	3.680	7-H21	-1,000	1.412				2.892
61.00	15.20	1489.11	5,008	3,686				1.412	0.920	8.665	3.087
67.50	15.22				7-JH2c	-1.000	1.413	1.413	0.972	8.674	3,182
		1489.12	5.017	3.690	7-JH2c	-1.000	1.413	1.413	1.021	8.682	
74.00	15.24	1489.13	5.027	3.695	7-H2c	-1.000	1.413				3.271
						- 7.500	1.413	1.413	1.068	8.689	3.352

· 我我的自我的我们的我们我们的我们的我们的,我们的我们的,我们的人们的人们的,我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人

Straight Culvert

Inlet Elevation (invert): 1484.10 ft, Outlet Elevation (invert): 1484.10 ft

Culvert Length: 48.00 ft, Culvert Slope: 0.0000

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 1484.10 ft Outlet Station: 48.00 ft

Outlet Elevation: 1484.10 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 1.50 ft

Barrel Material: Corrugated Steel

Embedment: 0.00 in

Barrel Manning's n: 0.0240

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting

Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: Small Area - Existing)

	T		(=1000mg	. oman Area	- Lasung)
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
9.00	1484.46	0.36	1.84	0.20	
15.50	1484.58			0.22	0.61
22.00		0.48	2.16	0.30	0.63
	1484.68	0.58	2.39	0.36	0.65
28.50	1484.76	0.66	2.58	0.41	-
35.00	1484.84	0.74			0.66
41.50		···	2.73	0.46	0.67
	1484.90	0.80	2.86	0.50	0.68
43.00	1484.92	0.82	2.89	0.51	0.68
54.50	1485.02	0.92	3.09		
61.00	1485.07			0.57	0.69
		0.97	3.18	0.61	0.70
67.50	1485.12	1.02	3.27	0.64	0.70
74.00	1485.17	1.07	3.35		·
	<u> </u>		3.35	0.67	0.70

Tailwater Channel Data - Small Area - Existing

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 10.00 ft

Side Slope (H:V): 10.00 (_:1)

Channel Slope: 0.0100

Channel Manning's n: 0.0350

Channel Invert Elevation: 1484.10 ft

Roadway Data for Crossing: Small Area - Existing

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 500.00 ft
Crest Elevation: 1489.00 ft
Roadway Surface: Gravel
Roadway Top Width: 22.00 ft

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 9 cfs Design Flow: 43 cfs Maximum Flow: 74 cfs

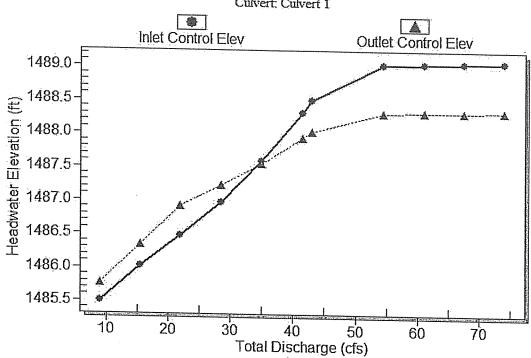
Table 1 - Summary of Culvert Flows at Crossing: Small Area - Proposed

Headwater Elevation	Total Discharge (cfs)	Culvert 1 Discharge	Roadway Discharge	
(ft)	(0.0)	(cfs)	(cfs)	Iterations
1485.76	9.00	9.00	0,00	1
1486.34	15.50	15.50	0.00	1
1486.91	22.00	22.00	0.00	1
1487.23	28.50	28.50	0.00	1
1487.58	35.00	35.00	0,00	1
1488.31	41.50	41.50	0.00	1
1488.50	43.00	43.00	0.00	1
1489.03	54.50	47.02	7.19	17
1489.05	61.00	47.15	13.62	4
1489.06	67.50	47.25	19.80	3
1489.08	74.00	47.34	26,34	3
1489.00	46.79	46.79	0.00	Overtopping

Rating Curve Plot for Crossing: Small Area - Proposed

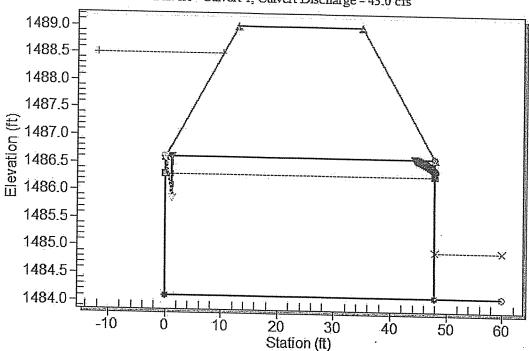
Table 2 - Culvert Summary Table: Culvert 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
9,00	9,00	1485.76	1.397	1.663	7-H2c	-1.000	0.995	0.995	0.360	4.941	4.000
15.50	15.50	1486.34	1.927	2.242	7-H2c	-1.000	1.326	1.326	0.483	5.860	1.836
22.00	22.00	1486,91	2.379	2.812	7-H2c	-1.000	1.592	1.592	0.581		2.163
28.50	28.50	1487.23	2.876	3,129	7-H2c	-1.000	1.818	1.818		6.670	2.395
35,00	35.00	1487.58	3.481	3,448	7-JH2c	-1,000	2.007	2.007	0.664	7.453	2,579
41.50	41.50	1488,31	4.214	3,833	7-JH2c	-1.000			0.737	8.087	2,732
43,00	43.00	1488,50	4.401				2.160	2.160	0.803	9.008	2.864
				3.931	7-JH2c	-1.000	2.189	2.189	0.818	9.248	2,892
54,50	47.02	1489.03	4.932	4.211	7-JH2c	-1.000	2.258	2,258	0.920	9,900	3,087
61.00	47.15	1489.05	4.949	4.220	7-JH2c	-1.000	2,260	2,260	0.972		
67.50	47.25	1489.06	4.962	4.228	7-JH2c	-1.000				9.919	3,182
74.00	47.34	1489.08	4.975				2.262	2.262	1.021	9.935	3.271
	77.07	1403.00	4.975	4.234	7-JH2c	-1.000	2.263	2.263	1.068	9.951	3.352


Straight Culvert

Inlet Elevation (invert): 1484.10 ft, Outlet Elevation (invert): 1484.10 ft

Culvert Length: 48.00 ft, Culvert Slope: 0.0000


Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Small Area - Proposed, Design Discharge - 43.0 cfs
Culvert - Culvert 1, Culvert Discharge - 43.0 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 1484.10 ft
Outlet Station: 48.00 ft
Outlet Elevation: 1484.10 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 2.50 ft

Barrel Material: Corrugated Steel

Embedment: 0.00 in

Barrel Manning's n: 0.0240

Culvert Type: Straight

Inlet Configuration: Beveled Edge (1:1)

Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: Small Area - Proposed)

	T				op ood a,
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
9.00	1484.46	0.36	1.84	0.22	0.61
15.50	1484.58	0,48	2.16	0.30	
22.00	1484.68	0.58	2.39	0.36	0.63
28.50	1484.76	0.66	2.58		0.65
35.00	1484.84	0.74	2.73	0.41	0.66
41.50	1484.90	0.80		0.46	0.67
43.00	1484.92		2.86	0.50	0.68
54.50		0.82	2.89	0.51	0.68
	1485.02	0.92	3.09	0.57	0.69
		0.97	3.18	0.61	0.70
	1485.12	1.02	3.27	0.64	
74.00	1485.17	1.07	3.35		
61.00 67.50 74.00	1485.07 1485.12 1485.17		3.27		0.70 0.70 0.70

Tailwater Channel Data - Small Area - Proposed

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 10.00 ft

Side Slope (H:V): 10.00 (_:1)

Channel Slope: 0.0100

Channel Manning's n: 0.0350

Channel Invert Elevation: 1484.10 ft

Roadway Data for Crossing: Small Area - Proposed

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 500.00 ft
Crest Elevation: 1489.00 ft
Roadway Surface: Gravel
Roadway Top Width: 22.00 ft

Project No.:

1904090

Date:

6/20/2019

Location:

Montpellier

Existing Conditions:

18" CMP

Contributing Drainage Area (CA):

Contributing Area (SQ. FT.):

2.65E+07 (Fill In)

Contributing Area (Acres):

608.1088384

Contributing Area (SQ. Ml.):

0.95

Main-channel Slope (S):

Elevation located 85% of longest water course:

1485

Elevation located 10% of longest water course:

1480

Distance Between Elevations:

6033

Main-channel Slope (FT/MI):

4.3759324

Peak Flow:

Region:

С

Q(2) =

7

Q(10) =

32

Q(15) =

42

Q(25) =

55

Q(50) =

77

Q(100) =

101

Q(500) =

166

Project No.:

1904090

Date:

7/15/2019

Location:

Montpellier

Existing Conditions:

18" CMP

Contributing Drainage Area (CA):

Contributing Area (SQ. FT.):

5.05E+08 (Fill In)

Contributing Area (Acres):

11590.11816

Contributing Area (SQ. Ml.):

18.11

Main-channel Slope (S):

Elevation located 85% of longest water course:

1504

Elevation located 10% of longest water course:

1481

Distance Between Elevations:

34253

Main-channel Slope (FT/MI):

3.5453829

Peak Flow:

Region:

С

Q(2) =

40

Q(10) =

217

Q(15) = Q(25) =

284

Q(50) =

379

Q(100) =

527

Q(500) =

699

1171