

Legacy Well Innovations & Opportunities

House Bill 1272

Testimonial Presentation of Kyle Gardner

Senate Energy and Natural Resources Committee

March 9, 2023

OPERATIONS

Cobra operates producing properties in Alabama, Arkansas, Louisiana, New Mexico, North Dakota, Michigan, Mississippi, Oklahoma, Texas, Utah and Wyoming .

North Dakota Cumulative Oil Production By Formation

Williston Basin Fun Facts

- According to NDGS production/well count data, all ND productive formations that have produced more than 1MM BO, average 221,411 BO/well.
- Bakken/Three Forks Cumulative Production/Total Well Count yields an average 233,910 BO/well.
- Bakken/Three Forks made 1,078,594 BOPD in September-2022.
- Bakken /Three Forks currently produce 96% daily production in ND.
- The Madison Formation links every Bakken well to a historically prolific conventional reservoir.

SO WHAT IS NEXT?

Madison Formation Fun Facts

- Conventional carbonate reservoir.
- Contains reservoir quality rock throughout the basin.
- Can source its own hydrocarbon.
- Has been identified as a Residual Oil Zone (ROZ) formation via academic research and empirical production data.

What is a Residual Oil Zone (ROZ)?

- A section within the stratigraphic column of a formation that exists below the "oil-water contact" of a reservoir which contains "immobile oil."
- These sections of reservoirs have been naturally water flooded by 3 different criteria.
- In result, remnants of oil are stranded within sections of rock that the oil once migrated through.

Types of ROZ

- <u>Type I</u> Occurs when an existing hydrocarbon accumulation in a trap is subjected to a regional tilt (tectonically induced). Forcing oil to re-establish a new equilibrium.
- <u>TYPE II</u> Occurs when a trap's seal is breached & allows for some or all of the hydrocarbon accumulation to vertically migrate from the trap, up the stratigraphic section.
- <u>TYPE III</u> Similar to Type I but the static hydrocarbon accumulation undergoes a tilt due to ground water flows within the reservoirs.

Methods to Exploit the ROZ

- CO2 Injection into the ROZ allows the CO2 to become miscible within the oil droplets which in result lowers the oil interfacial surface tension, reduces viscosity and helps vacate the oil from the rock.
- Depressurizing the ROZ lowers the reservoir pressure within a radius around the wellbore to the bubble point pressure which allows the oil droplets to swell from gas expansion within the oil and helps vacate the oil from the rock.

Type II ROZ

CORE LABORATORIES, INC. PAGE NO. 1 Petroleum Reservoir Engineering PALLAS, TEXAS								
RENVIL	LE COUNTY	FOR DRL LOC STA	MATION : MISSI G. FLUID: SALT ATION : TE : NORTH	DATE : FILE NO. : ANALYSTS : ELEVATION:				
			CONVENTIONAL C	ORE ANALYSIS				
SAMP. NO.	HT430	PERM. TO AIR (MD) HORZ. VERTICAL	POR. FLUID S FLO. DIL #	ATS. GR.	DESCRIPTION			
123456	4572-73 4573-74 4574-75 4575-76 4576-77 4577-78	0.92 64 7.2 104 0.15 42	13.5 12.9 18.5 15.2 12.0 17.6 18.5 16.6 6.5 3.2 12.8 10.9	30.0 23.2 35.2 CVF 35.2 CVF 60.9 34.2	LM FN XLN VUGGY CALC INF. LM FN XLN VUGGY CALC INF. LM FN XLN VUGGY CALC INF. LM FN XLN SCAT VUGS CALC INF. LM FN XLN SCAT VUGS CHKY LM FN XLN VUGS CALC XTAL			
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	4578-79 4579-80 4580-81 4581-82 4582-83 4583-84 4584-85 4585-86 4586-87 4587-88 4588-89 4588-89 4589-90 4590-91 4591-92 4592-93 4593-94 4594-95 4595-96 4596-97	1.1 0.39 13 3.8 19 33 7.6 36 14 13 51 7.8 178 13 0.12 0.16 0.66 66 3.5	7.4 7.1 20.7 23.7 10.1 11.9 10.2 8.8 11.3 18.5 11.9 14.8 10.0 14.0 11.1 14.3 11.9 9.9 23.4 14.8 12.6 26.3 18.1 23.4 12.5 14.1 14.4 18.5 9.0 17.7 7.7 12.1 8.8 8.0 3.0 3.6 10.5 13.3	31.0 23.7 31.8 29.2 36.9 CVF 28.0 CVF 28.6 CVF 38.0 33.6 21.7 23.4 39.1 27.8 CVF 28.8 CVF 28.8 CVF 40.3 CVF 48.2 50.3 39.8	LM FN XLN VUGS CALC XTAL LM OOL SCAT VUGS CALC INF. LM FN XLN SCAT VUGS CALC INF. LM FN XLN VUGS CALC INF.			

CVF CLOSED VERTICAL FRACTURE

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose axclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and ornitions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or

Type II ROZ

- Standard conventional approach "Pop the Top"
- Cobra Oil & Gas ROZ approach (full yellow section)
- Rock data,
 petrophysical data,
 mudlog data, &
 production data
 support a Type II
 ROZ.

RENVILLE COUNTY

DRLG. FLUID: SALT GEL NO OIL STATE : NORTH DAKOTA

FORMATION : MISSION CANYON

CONVENTIONAL CORE ANALYSIS

				_			
SAMP. NO.	DEPTH	PERM. TO HORZ.	AIR (MD) VERTICAL	POR. FLD.	FLUID SATS. OIL WATER	GR. DNS.	DESCRIPTION
	4507.00			10, 10, 10 M	enteright angles and rate of	stated states	
20	4597=98	20	11	14.3	8.0 29.5		LM FN XLN CALC INF.
27	4598~99	38		14.6	9.3 42.6		LM FN XLN CALC INF.
28	4599 -0	2,6		13.3	11.6 26.0	CVF	LM FN XLN VUGS CALC INF.
29	4600 -1	200		15.2	11.2 31.0	CVF	LM FN XLN SCAT VUGS CALC INF.
30	4601 -2	11	31.77.2	11.5	15.2 28.8	CVF	LM EN XLN SCAT VUGS CALC INF.
31	4602 -3	157	1.1.2	21.7	14.0 29.7	CVF	LM EN XLN OOL CALC INF.
32	4603 -4	250		18.3	17.2 27.4	CVE	LM EN XLN VUGS CALC INF.
33	4604 =5	31	2.1	17.9	12.8 28.8	CVE	LM EN XLN OOL CALC INF.
34	4605 -6	314		15.8	14.9 27.5	CVF	LM EN XEN OOL CALC INF
35	4606 -7	61	1.6.6	18.1	15.5 35.2	CVF	LM EN XLN CALC INF.
36	4607 -8	.93		15.2	17.4 32.4		LM EN XLN CALC INF.
	4608-4612					4	NO ANALYSTS IS
37	4612-13	24		10.6	13.1 26.1	CVE	IM EN XIN CALC INE.
38	4613=14	6.5		7.0	3.0 62.7	CVE	IM VIEN VIN CALC THE
39	4614=15	113		0.1	2.3 51 0	CVE	LA VEN VEN CALC INF.
40	4615=16	44		2.1	2.3 31,9	CVF	LM VZEN KLN CALC INF.
40	4015-10	41		0.9	1.1 43.2	CVF	LM VZEN XLN CALC INF.
	4010-4023	a 43		1.1	and and a	1.1	NO ANALYSIS LS
41	4023#24	0,03		6.7	7.7 33.8	CVF	LM V/FN XLN CALC INF.
42	4624=25	5.8		10.9	16.3 29.0	- CVF	LM V/FN XLN SUC CALC INF.

CVF CLOSED VERTICAL FRACTURE

These analyses, opinions or interpretations are based on observations and materials applied by the client to whom, and for whose exclusive and coefficiential use, this supert is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and outlasions excepted); but Core Laboratories, Inc. and its officers and employees, atomn to responsibility and make no warranty or rememberships as to the modest him movement on another blance of use of a set of an other where and is connection with which such second is and a called uses

Type II ROZ Standard

conventional approach "Pop the Top"

Cobra Oil & Gas ROZ approach (full yellow section)

Rock data, petrophysical data, mudlog data, & production data support a Type II ROZ.

CORE LABORATORIES, INC. Petroleum Rezervoir Engineering DALLAS, TEXAS

PAGE NO. 2

FILE NO. :

ANALYSTS :

ELEVATION:

DATE

Type II ROZ Results (Mission Canyon – Renville County, ND)

- After completing the full section of the productive Mission Canyon bed, oil cut increased with increased takeaway from increased reservoir deliverability.
- Cobra Oil & Gas deems this a method of reservoir depressurization.
- Like the San Andres ROZ plays of the Permian Basin, Cobra Oil & Gas believes the Mission Canyon ROZ potential could cover large areas of the Williston Basin.

TerraTek Core Services, Inc."									OIL & GAS CORPORATION		
	Univer	sity Research Park - 3	60 Wakara Way -:	Salt Lake Ci	ty, Utah 84	108 - (801) 584-2	480 - TWX 910-925-5284	Pa⊴e 2	Type II/III ROZ		
Sample Number	Nerth (feet)	Permesbility Horz (md)	rus una sun una sun Parosits (2)	Sətur Cil (Z)	ation H2U (%)	Grain Density (sn/cc)	Lithology		 Standard conventional approach "Pop 		
19 20 21 22 23 24 25 26 27 20	9186.0-87.0 9187.0-88.0 9188.0-89.0 9189.0-90.0 9190.0-91.0 9191.0-92.0 9192.0-93.0 9193.0-94.0 9194.0-95.0 9195.0-96.0	7.0 21 9.6 3.2 0.04 24 11 0.14 0.40 13	14.0 17.5 14.8 11.9 4.3 15.6 14.4 6.5 4.5 13.0	24.2 38.8 36.3 37.6 10.8 63.9 30.2 5.7 21.6 48.4	26.0 21.3 22.4 25.6 18.4 21.3 17.0 32.1 39.6 30.5	2,79 2,81 2,82 2,78 2,78 2,78 2,83 2,84 2,79 2,81 2,81	Dolymxlysl/lms Dolymxlysl/lms Dolymxlysl/lms Dolymxlylms Dolymxl Dolymxl Dolymxl Lsymxlydol Lsymxlydol Dolymxl		 Unconventional approach to Type II/III ROZ example. 		
29 30 31 32 33 34 35 36	9196.0-97.0 9197.0-98.0 9198.0-99.0 9199.0-00.0 9200.0-01.0 9201.0 - 9201.5 9201.5 ~ 9202.0 9202.0-03.0 9203.0-04.0 9204.0-05.0	33 20 5.1 2.7 4.8 2.9 0.51 7.5	18.6 16.5 13.2 11.6 13.0 13.B 10.4 16.3	41.8 53.2 35.8 48.3 18.0 45.2 17.9 34.6	24.1 14.3 19.4 24.6 9.0 39.1 56.1 32.6	2,83 2,82 2,81 2,79 2,76 2,85 2,85 2,84	Dolymxi Bolymxi Dolymxiysi/imy Dolymxiysi/imy Bolymxiysi/imy Not Suitable for Analys Not Recovered Dolyf~mxi Dolyf~mxi Dolyf~mxi	is	 Rock data, petrophysical data & mudlog data support a Type III ROZ over a wide range of 		
37 38	7205.0-08.0 9208.0-07.0	7+5 0+22	18.5 16.1	39+2 5+2	43,1 71+1	2+84 2+85	Dul+f-m×1 Dul+f-m×1		the Williston Basin.		

						•	
		Terro	vlek C	ore S	ervices.	Inc."	
							Pada 3
_	Unive	ersiky Mesearch Park - 3	60 Wakara Way - s	зант цаке ситу, с	nan 84108 - (801) 5845	2480 TWX 910 975 5784	• St
							5
							C
	a antia tanti fina anto tant atau	nage and age and any area a	ng national and the same	na an na na ma ma	an teritoria	and and the same sets and and and the same sets	ann ann ann ann ann ann
ele.	liezth	Horz	FOLOSICS	oil F	20 Density	C101033	+
ber	(feet)	(bd)	(2)	(2) (2) (Sm/cc)		LI
	d alles have d'out outs have adde		then webly front office Walli is				
9	9207,0-08,0	18	15.5	9,4 5	6.3 2.83	Dol f-axi	
0	9208.0-09.0	0,58	12.9	25.3 4	10.8 2.84	Dol . f-mxl	• 0
1	9209.0-10.0	0.44	10.0	19.0 4	7,1 2,83	Pol /f-axl	
2	9210.0-11.0	1.4	13.3	40.6	28,5 2,82	bol,f-oxl	d
3	9211,0-12,0	0,14	8.4	11.5 5	16+2 2+82	Dol(fx1;s1/lns	
	9919. 0-17. A	0.01	4.0	9.9	15.0 9.79	Dell Pell of / Inv	
5	9213.0-14.0	0.04	8.5	9.9	6.2 2.84	Doleví-fxl	
6	9214.0-15.0	0.22	11.6	8.3 5	3.9 2.83	Dol vf-fx1	
7	9215.0~16.0	0.05	8.7	11.7 5	9.6 2.83	Dolyvf~f×l	• D
8	9216.0-17.0	0,03	7+4	12+2 5	52+2 2+83	Bol (vf-fkl	• R
	0.017 4 10 4				0.07	B-1 0 - 4 1	n
19	921/+0-18+0	0.02	0+8	0+2 4	2,83		P
10 14	9218,0-19.0	0.03	9.0	10.2	2+82	bolyvr-1%i Dolyvř-fyl	4
	7217+0-20+0	U. U.	340	1012 1	2100	203791 TAL	u

Type II/ III ROZ

- Standard conventional approach "Pop the Top"
- Unconventional approach to Type II/III ROZ example.
- Rock data,
 petrophysical
 data & mudlog
 data support a
 Type III ROZ over
 a wide range of
 the Williston
 Basin.

<u>Type II/III ROZ Metrics (Mission Canyon Fryburg Bed – Renville</u> <u>County, ND)</u>

- In a 1 mile radius from the referenced well ≈2,600,000 BO & 30,000,000 BW have been produced from 5 wells completed from the interval highlighted in "pink."
- The entire pore space capacity for 1 square mile of reservoir rock with the average quantities and height of the referenced core in the presentation is ≈20,000,000 Bbls, if the rock were completely filled with water.
- It is only possible to recover more total liquid than the calculated storage capacity of this rock section by having an increased:
 - I. Average porosity
 - II. Vertical height
 - III. Drainage radius

<u>Type II/III ROZ Outlook (Mission Canyon Fryburg Bed – Renville</u> <u>County, ND)</u>

- Assuming adequate fluid handling and disposal/injection capacity, in order to produce the stranded oil in this ROZ, the entire interval should be completed and depressurized or injected with CO2.
- Most of the Mission Canyon Fields are not defined by "dry holes" beyond the limits of productive reservoirs, but by the economic limit of commercial production at that point in time.
- Within the State of North Dakota, Mission Canyon Formation ROZ reserves could be comparable to the estimates of Bakken EOR reserves.

Brownfield ROZ vs. Greenfield ROZ

- **Brownfield ROZ** exists when a section of the ROZ contains the overlying "Oil-Water Contact" and commercially produced by conventional means.
 - CO2 can be injected into the Brownfield ROZ for EOR purposes.
- <u>Greenfield ROZ</u> No overlying primary production exists. This section has been naturally waterflooded & commercial production from a conventional application is not feasible. The only portion of the ROZ present is below the "Oil-Water Contact."
 - CO2 can be sequestered into the Greenfield ROZ, which would yield barrels of oil from offset producers, unable to be recovered by other means.

Needs for Bakken EOR & Madison ROZ Potential

- Available & affordable CO2.
- Available wells with mechanical integrity.
 - Wells of mechanical integrity within areas of Bakken EOR or Madison ROZ potential should be viewed as resources at a State level, not liabilities.
- Fluid handling systems.

References

- 1. Melzer, S., (2006) "Stranded Oil in the Residual Zone." U.S. Department of Energy Report, February.
- 2. Melzer, S., Trentham, R., (2016) "San Andres Formation Residual Oil Zones and Their Relationships to the Horizontal Carbonate Play On the Northern Shelf." Society of Independent Professional Earth Scientists, April.
- Burton-Kelly, M., Dotzenrod, N., Feole, I., Peck, W., He, J., Butler, S., Kurz, M., Kurz, B., Smith, S., Gorecki, C., Energy & Environmental Research Center, (2018) "Identification of Residual Oil Zones in the Williston and Powder River Basins" U.S. Department of Energy, March.

Thank You!

I will gladly answer any questions for further discussion.