Legislative Committee Briefing

North Central Research Extension Center

March 5, 2008

Your Touchstone Energy® Partner

Ron Rebenitsch, PE

Basin Electric's Wind 136 MW Existing

Wind offers a vast energy resource ...

The Great Plains can produce wind power at costs near 6-8¢/kWh

Aftertax: 3-5¢/kWh

Why are we looking at Hydrogen?

- Uses alternative resources
- Energy Security
- Clean fuel Low emissions
- Feedstock for fuel cells
- Etc...

Opportunity to store intermittent wind energy

Harvesting the wind is feasible, but...

Economics drives decisions!

Net Metering Concern: Rates are "Bundled"

Over ½ the cost of power supply is "wires"...

Not electricity

Wind Availability: 2006

"Wind 2H2" Project: <u>Address Wind's Primary Hurdles:</u>

Wind Generation - Sept. 2007 (Each Site Normed to 1 MW)

2006 & 2007 Generation During Monthly Peak HR

2006

2007

So, how do we get more value out of wind energy??

What's needed is "local use" or a "local battery"

The energy in 1 kWH...

...is enough to lift

50,000 lbs up to

50 feet!

50

Feet

The Project...

100 kWH 65% eff 65 kWH 88% eff 55 kWH 40% eff 22 kWH

Electrolyzer Stats

- Energy Input: 175 kW Electricity
- Energy Output: 2.7 kg/hr (30 NCMH) of H2
- Water Consumption: 0.264 GPM (15 GPH)
- H2 Pressure: ~6,200 psi
- H2 Storage: 80 kg
- Purity: 99.998%

Electrolyzer Station

Vehicles Converted to H2

Tri-Fuel
Hydrogen
E85 Ethanol
Gasoline

Butler

Diesel/H2 Mix

My Not Fiel Gels?

Fuel Cells

- Limited Availability
- Very Expensive

- Conversions available
- Much lower cost

Energy Content of Gasoline vs. Hydrogen

Rule of Thumb:

The energy in 1 kg of H2 is roughly equivalent to 1 Gal of Gasoline

Gasoline: ~123,000 BTU/Gal

Hydrogen: ~134,000 BTU/kg

Energy Density of H2...

At 6200 psi...

1 Cu Ft H2 Weighs ~2.2 lbs

1 Cu Ft of Gasoline Weighs ~46 lbs

("Atmospheric" Pressure)
The same
2.2 lbs of H2
takes 330 Cu Ft

1 kG

Almost 7 times as much energy

Expected Cost of "on-site" Wind Power to "Fuel" the Electrolyser...

It takes 60 kWh to make one kg of H₂

Cost of power from a large wind project:

~ 3.0-4.5¢ per kWh (after tax credits, etc.)

Energy cost to make hydrogen from wind:

~\$1.75 to \$2.50/gal of gasoline

Capital costs (not energy costs) drive the economics

Installed Cost of Electrolyzer:

About \$1.5 Million

Capital Costs are the biggest portion of hydrogen fuel cost

Some "Back-of-the-Envelope" Numbers

Annual Production:

@ 83% Capacity Factor: 19,631 kg/yr

Capital Cost
 (\$1,500,000, 6%, 10 yrs): \$9.60/kg

• Electricity (4¢/kWh, 60 kWh/kg): \$2.40/kg

Total: Electrolyzer & Power \$12.00/kg

Plus Misc. (O&M, parts, etc)

Economy of Scale Will Drive Costs Down...

Current Technology

Est.

\$4-6/kg

Advanced Technology

Est.

\$2-4/kg

DOE W/Economy of Scale

DOE Future Target

Project: Lessons Learned....

- Costs are higher than expected
- Not "Plug & Play"
- A H₂ design engineer is critical
- Expect schedule delays
- Infrastructure costs are high
- Internal combustion is here now

Technology is needed!

- Compression?
 - Volume/Weight Considerations
 - Not very cost effective
- Metal Hydrides?
- Nanotechology?
- New & Unknown Technology? (Hydronol?)

How does Hydrogen fit into the "Big" Energy Picture?

US Gasoline Consumption:About 400 Million GPD

To replace all US gasoline with H₂ using electrolysis would require 900,000 MW of baseload generation

That is roughly equal to existing installed US generation capacity

DOE Projected H₂ Costs....

Data Source: DOE Office of Sequestration, hydrogen and Clean Coal Fuels, Edward Schmetz, Sept 8, 2004

Renewable Portfolio Standards

DSIRE: www.dsireusa.org January 2008

2007 US Electricity Consumption

A 15% by 2020 RPS would require ~250,000 MW of Wind

Will require building one 1.5 MW turbine every 45 minutes

Transmission is the key to any generation...

To move the product to market:

A Long Term Vision... <u>A</u> <u>Mational Backbone Grid</u>

