Associated Gas in the Bakken Formation – Attendant Challenges and Opportunities

North Dakota Legislative Council
Energy Development and Transmission Committee Meeting

August 28, 2012

John Harju Associate Director for Research

Energy & Environmental Research Center (EERC)...

DESCRIPTION OF THE PROPERTY OF

2012 University of North Dakota Energy & Environmental Research Center

Investigating Flare Gas Reductions

- The EERC was funded in May 2011 by the North Dakota Industrial Commission (NDIC), U.S. Department of Energy (DOE), and Continental Resources to investigate alternatives to flaring:
 - Rig power demonstration
 - Associated gas utilization study
- The EERC continues to work with various Bakken partners to explore novel methods to reduce flaring and monetize this otherwise-uncaptured resource.

however, and content or Applied howing, to carefung

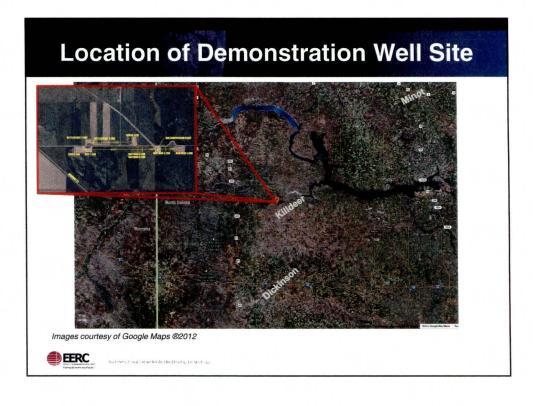

Challenged Wellhead Gas

THE UNIVERSITY OF NORTH DAKOTA

Drilling Demonstration Overview

- Test dual-fuel operation of a Caterpillar engine at the EERC:
 - Butler Machine supplied Caterpillar 3512 engine.
 - Simulated rich-gas mixture produced with EERC-fabricated gas-metering system.
 - GTI Bi-fuel® system used to manage fuel supply to engine.
 - Monitored engine performance and emissions under varying operating conditions and fuel mixtures.
- Field demonstration of gas-powered drilling operations using rich Bakken gas:
 - Two wells are being drilled using GTI Bi-fuel system fueled with rich wellhead gas.
 - Monitoring engine performance, gaseous and diesel fuel use, and emissions over entire drilling cycle.

Synthetic Rich-Gas Tests


- Tested dual-fuel operation of a Caterpillar 3512 engine at the EERC:
 - Tests completed June 2012.
 - Tests concluded that diesel replacement rates of greater than 40% can be achieved and that the GTI Bi-fuel system can control fuel use to ensure safe engine operation.
 - Field testing is enabling further assessment of optimized gaseous fuel utilization.

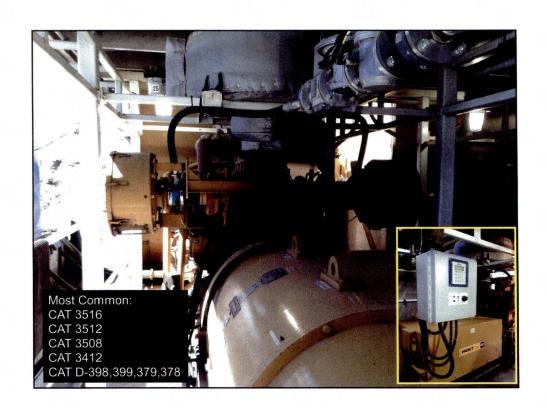
Field Tests Using Rich Wellhead Gas

- Field demonstration of gas-powered drilling operations using rich Bakken gas:
 - GTI Bi-fuel power system now installed on a two-well pad, Hartman 3-28 and Hartman 4-28H.
 - System performance is being monitored for the duration of the batch drilling operation.
 - Gas supply will come from Hartman 2-28H, approximately 1500 feet east of the test site.

to brond and core to Acole (broog, to rand a

Project Participation and Funding

- · Project partners:
 - Continental Resources
 - GTI-Altronics
 - Butler CAT
 - ECO-AFS
 - NDIC Oil and Gas Research Council (OGRC)
 - U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL)
- Funding Total \$1,900,000
 - NDIC OGRC \$750,000
 - DOE NETL \$400,000
 - Continental cost share \$750,000


Take Home Summary

- Demonstrate efficient and economical use of wellhead gas:
 - Improve economics of drilling operations \$3200–\$9600/day diesel cost avoided
 - Reduce gas flaring in the Williston Basin
 - Reduce diesel fuel delivery and associated traffic
- Establish guidelines for rich-gas use in diesel engines:
 - Define diesel replacement ratio that maximizes gas use while preventing engine knock and improving engine emissions
- · Prove logistics of rich-gas capture and delivery to drill sites.
- Demonstrate progressive approach to improve efficiency and mitigate impacts of oil and gas production.

Associated Gas Utilization Study

THE UNIVERSITY OF NORTH DAKOTA

Study Goals

- Assess the technical viability of technologies utilizing associated Bakken gas.
- Define economic conditions that would enable commercial deployment both regionally and nationally:
 - Define unutilized gas resource in the Williston Basin.
 - Identify natural gas use options that match quality and quantity of associated gas.
 - Identify distributed-scale gas cleanup technologies.
 - Identify uses tolerant of natural gas liquids (NGLs), moisture, CO₂, and sulfur.
 - Assess economic conditions that could lead to viable opportunity.

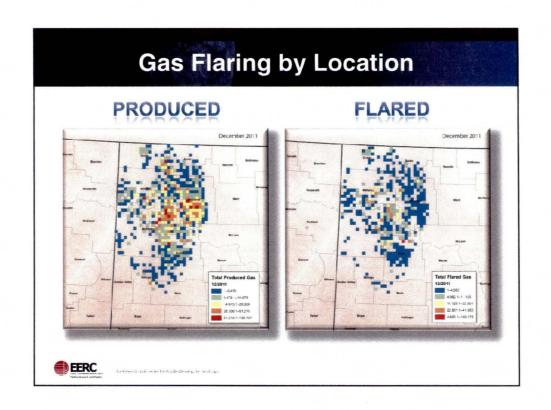
terioristical) ease for Assled Freig, terrard by

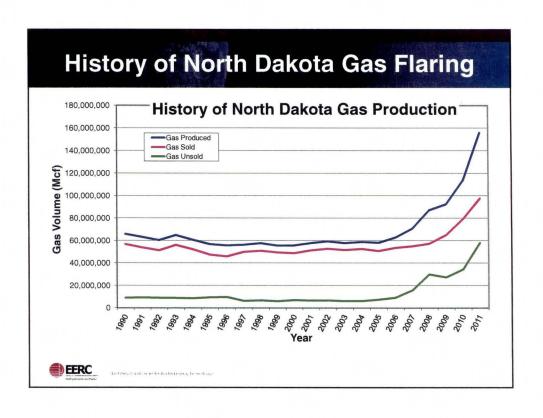
Study Motivations

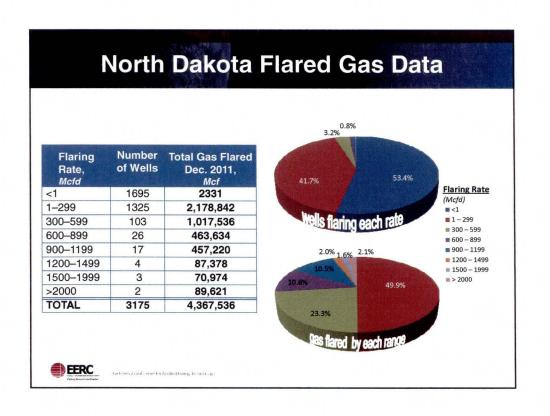
- Based on a desire to assess/define end uses that:
 - Have favorable economics.
 - Take advantage of small, distributed quantities of gas.
 - Require less gas cleanup than pipeline gas (rich gas).
 - Maximize profitable use of North Dakota associated gas.
 - Maximize revenue extraction from resources.
 - Reduce flared gas.
 - Improve air quality.
 - Ensure good stewardship of resources.
- Potential uses may fall outside the typical model of gas-gathering, processing, and pipeline infrastructure.

Study Methodology

- Resource assessment:
 - Assess quantity and quality of gas produced and not marketed.
- Initial end-use technology evaluation:
 - Identify potentially viable end uses, accommodate gas quantity and quality (distributed scale with regional demand to provide economic advantage).
 - Define high-level business opportunities and questions or data gaps.
- Engagement of technology providers and potential end users:
 - Engage technology providers.
 - Exchange information on enabling technology platforms (e.g., cleanup requirements).
 - Refine and prioritize end-use opportunities.
- Refine end-use technology evaluation.
- Produce first-cut economics for pertinent end uses.




Study Contents


- · Gas resource
 - Overview of gas produced and flared
- CNG/LNG
 - Utilizing associated gas with minimum cleanup in oil field fleets.
- Power
 - Oil field equipment/off-grid, peaking power, firm intermittent power.
- Chemicals
 - Assess applicability of North Dakota-based industry.
 - Natural gas to fertilizer, Fischer-Tropsch (FT) liquids, or alcohols.
- NGI s
 - Ethane olefins, polyethylene, ethylene glycol.
 - Propane liquefied petroleum gas (LPG), propylene, polypropylene.
 - Butanes gasoline additive, butylene, dilbit.
 - Pentanes gasoline additive, dilbit.
 - Hexanes gasoline, dilbit.

the later of course better the Angles Library, the ration of

Study Results Summary

Technology	Gas Use Range, Mcfd	NGL Removal Requirement	Scalability to Resource	Mobility	Likelihood of Deployment at Small Scale
Power – Grid Support	1000-1800	Minimal	Very scalable	Mobile	Very likely
Power – Local Load	300-600	Minimal	Very scalable	Mobile	Very likely
CNG	50+	Yes	Scalable	Mobile	Possible
Chemicals	>2000	No	Not scalable	Not mobile	Very unlikely
Fertilizer	300-2000	No	Scalable	Potentially mobile	Possible
Gas-to-Liquids	>2000	No	Scalable	Potentially mobile	Possible

and all Parks

Contact Information

Energy & Environmental Research Center

University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, North Dakota 58202-9018

World Wide Web: www.undeerc.org Telephone No. (701) 777-5157 Fax No. (701) 777-5181

John Harju, Associate Director for Research jharju@undeerc.org

to before exceed metals for her her best brong, to rarch say